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Abstract.  

Artificial intelligence (AI) shows great potential in medical diagnosis and drug analysis. Through deep learning 

technology, AI can automatically extract features from large amounts of complex medical data, significantly 

improving diagnostic accuracy and drug development efficiency. Especially in drug target discovery and 

antiviral peptide classification, AI technology can accelerate data processing and prediction, helping researchers 

identify potential therapeutic molecules more quickly and optimize the drug development process. This study 

proposes and validates a Deep learn-based model, deep-Avpiden, to improve the classification and discovery 

efficiency of antiviral peptides (AVPs). By using sequential convolutional networks (TCNs), the model 

outperforms traditional recurrent neural networks (RNNs) and long short-term memory networks (LSTMs) in 

capturing long-term dependencies and parallel computing capabilities. In terms of dataset, we used AVPs and 

non-AVPS samples from multiple databases, totaling 5,414 cleaned and de-weighted peptide sequences for 

model training after data preprocessing and embedding. The Deep-AVPiden model has been shown to 

outperform existing advanced classifiers in experiments, and its effectiveness has been verified by accuracy, 

precision, recall rate, and area under the ROC curve (OC-ROC). In addition, to accommodate computing 

resource constraints, we propose an optimized version of Deep-AvPIDen (DS), which utilizes Deep separation 

convolution technology to significantly reduce computing resource consumption. Through the online application 

platform, researchers can efficiently classify antiviral proteins and discover new AVPs. Future research could 

further optimize the model's computational efficiency, handle larger data sets, and expand its potential for 

biomedical problems such as drug combination prediction and new drug discovery. 
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1.  Introduction 

Since the 20th century, deep learning theory has undergone extensive research and development. 

With the progress of science and technology and the significant improvement of computing power, 

deep learning technology has gradually been widely used in the past decade, including machine 

translation, target tracking, automatic driving, and other fields[1]. These successful applications not 

only promote the progress of deep learning technology itself but also provide a new way to solve 

bioinformatics problems such as drug-target interaction prediction[2][3]. Deep learning techniques 

learn higher-dimensional, more abstract models from large-scale biomedical data by making 

multiple nonlinear transformations of the original input features[4][5]. This capability enables the 

application of deep learning in the prediction of drug-target interactions. Drug target interaction 

prediction is an important task, which involves extracting discriminative features from the original 

characterization of existing drugs and targets and predicting the interactions between drugs and 

targets through these features[6][7]. 

In recent years, drug target interaction prediction methods based on deep learning technology have 

gradually attracted the attention of researchers. These methods have made significant 

improvements in the prediction of drug-target association problems, but they also face new 

challenges[8]. Specifically, drug target interaction prediction is often viewed as a binary 

classification problem that requires extracting valid molecular fingerprint descriptors or features 

from complex and diverse raw data[9].  

 

Figure 1. Enzymes as Drug Targets 
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Enzymes are a type of protein and essential biomolecules within the human body that act as 

biological catalysts to facilitate specific chemical reactions. They speed up these reactions while 

remaining unchanged[10]. Substrates are the molecules that enzymes interact with, and when they 

bind to the enzyme’s active site, they undergo a reaction to form new molecules known as products. 

The enzyme secures the substrate in its active site through various interactions, including hydrogen 

bonding, ionic bonding, and van der Waals forces, enabling a successful reaction to occur[11]. 

The other function of the enzyme is to provide functional groups that will react with the substrates 

to carry out the necessary chemical reactions that support all our life processes. This puts forward 

high requirements on how to design effective deep learning structures. In addition, compared to 

traditional machine learning methods (such as support vector machines, logistic regression, etc.) 

with better interpretability, deep learning methods are often referred to as "black boxes" and their 

predictive results are less interpretable. Although deep learning models excel in predictive 

performance, their lack of interpretability may limit their widespread adoption in industrial 

applications, particularly in the improvement and design of new drugs[12]. 

Based on deep learning technology, this paper aims to mine and integrate known biological 

experimental data from the perspective of bioinformatics to predict potential drug target 

interactions by constructing reasonable models[13]. This paper will focus on solving the problems 

existing in the prediction of drug target interactions, and in-depth analysis of the interpretability 

of deep learning models to improve the accuracy of drug screening[14]. This research will provide 

a scientific basis for drug development and is expected to reduce research and development costs 

and promote the development of biomedicine. 

2.  Related Work 

2.1.  Prediction of drug-target interactions 

Drug-target interaction prediction task is a typical binary problem. Specifically, if there is an actual 

interaction between the drug and the target, the sample is labeled 1;[15][16] If it does not exist, it is 

marked as 0. With the rapid development of computer technology and algorithms, drug-target 

interaction screening based on computational biology has been paid more and more attention. The 

high concurrent processing capacity and powerful computing power of the computer significantly 

shorten the screening time of drug-target interaction, and the computational method provides a 

more efficient alternative to the full biomedical experimental verification of traditional methods. 
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At present, the research results of drug-target interaction prediction can be mainly divided into 

three categories: ligand-similarity-based methods, molecular docking-based methods, and 

chemical genome-based methods. Ligand-similarity-based methods make predictions by 

comparing chemical structural similarities between drugs and targets[17]. The molecule-docking 

approach evaluates the likelihood of binding by simulating the binding process between the drug 

and the target[18][19]. Chemogenome-based approaches involve analyzing the effects of drugs on 

the genome to predict their targets. 

Recent advances in cancer treatment indicate that drug combination therapy has become the 

standard clinical strategy for the treatment of complex diseases such as cancer. The rationale for 

drug combination is that multiple drugs target multiple targets, pathways, and cellular metabolic 

processes in the disease, thereby reducing the toxicity and development of resistance to single-

drug therapy[20]. For example, anastrozole combined with fulvestrant in the treatment of metastatic 

breast cancer, amiloride combined with hydrochlorothiazide in the treatment of hypertension, 

glibenclamide combined with metformin in the treatment of type 2 diabetes, etc.[21][22], all 

demonstrate the effectiveness of combination therapy. However, although traditional clinical trial 

methods can provide intuitive drug combination effects, the trial design is complex and inefficient 

due to the possible side effects of new drugs and the unpredictability of therapeutic effects. 

 

Figure 2.A deep learning-based method for predicting novel drug-target interactions 

To accelerate the discovery of drug combinations, large-scale screening techniques such as 

multiple screening and high-throughput screening were introduced. These methods detect activity 

through models at the cellular or molecular level and accumulate a large amount of data for drug 

combinations. However, the exponential growth of the search space for large amounts of data 

makes the screening process difficult and time-consuming. Therefore, many computational 

methods and predictive models have been proposed to shorten the search time. 



Journal of AI-Powered Medical Innovations   Home page https://japmi.org/  Page: 48 

 

 

In recent years, computational methods have been widely used in drug combination prediction. 

Machine learning methods have become the focus of research, but there are also systems biology 

methods, dynamic models, and random search methods[23].The systems biology approach focuses 

on analyzing biological networks, and Yu et al. use network embedding to predict the feasibility 

of drug combinations[24]. The dynamic model uses equations to simulate the dynamic changes of 

network nodes, and Sun et al. analyze the efficacy of signal transduction networks through 

pharmacological perturbations. Random search algorithms such as MACS[25][26] screen drug 

combinations by search algorithm and fitness function. Although each of these methods has its 

advantages and disadvantages, the emergence of machine learning, especially deep learning 

methods, has provided a new direction for drug-target interaction prediction and has richer 

application potential. 

2.2.  Prediction method of drug-target interaction based on traditional machine learning 

In recent years, drug combination prediction has seen the application of various computational 

methods, with machine learning being the most widely used. Additional approaches, such as 

systems biology, dynamic models, and stochastic search methods, have their niche applications 

while also facing certain limitations; many of these methods often incorporate machine learning 

for enhanced predictions. Systems biology, for instance, centers on the control and analysis of 

biological networks—Yu et al. harnessed these networks for predicting drug-target interactions, 

illustrating the potential of network embedding in drug combination prediction. [27]Cheng and 

colleagues introduced classic network proximity calculations, which quantify the relationships 

between drug targets and disease proteins in human protein-protein interaction networks by 

assessing the topological connections between drug modules (subnetworks of drug targets) and 

cancer modules (subnetworks of cancer proteins), identifying six unique topological categories for 

all potential drug-drug-disease combinations.Dynamic models use differential equations to 

simulate the dynamic changes of network nodes. Sun et al. analyzed the impact of pharmacological 

perturbations on signal transduction networks, examining the role of crosstalk intensity in 

switching between drug sensitivity and resistance. However, most dynamic definitions of 

biological networks lack reliable explanations.  

The accuracy of mathematical methods relies on underlying model assumptions. Li et al. proposed 

the Combination Drug Assembler (CDA), which employs hypergeometric tests for pathway gene 
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set enrichment analysis to assess signal pathway expression patterns and drug set patterns[28]. 

Stochastic search algorithms explore iterative drug combinations and measurements within the 

possibility space. Zinner et al. introduced the Medical Algorithm Combination Screening 

(MACS)[29], which integrates search algorithms with a novel fitness function based on inhibition 

levels and drug quantity. However, due to computational time and space costs, these methods are 

typically applicable only to small datasets. Compared to these algorithms, machine learning and 

the recently emerging deep learning methods offer more advanced capabilities. Traditional 

machine learning methods in drug-target interaction prediction mainly rely on supervised learning 

to predict the interaction between drugs and targets by training their molecular descriptors 

(features). [30]These methods compute large amounts of biomedical data and utilize statistical 

models to make predictions about potential drug-target interactions. Commonly used traditional 

machine learning methods include support vector machine (SVM), logistic regression (LR), 

random forest (RF), etc., each of which has its characteristics and has been applied to drug 

screening and target identification. 

⚫ PredAntiCoV: PredAntiCoV is a two-stage classifier tool designed to solve the prediction 

problem of antiviral drugs (AVPs). The first stage uses the amino acid composition, dipeptide, 

physicochemical properties, and other characteristics of the drug to predict whether the drug 

is an antiviral drug through the random forest (RF) [14]model. The second phase further 

predicts whether these drugs have the potential to fight specific viruses. The tool uses a variety 

of undersampling methods to deal with data imbalances and analyzes the importance of 

features with p-values to help optimize predictive performance. 

⚫ AVPIden: AVPIden is a two-stage predictive model focused on identifying antiviral drugs 

and their targets. The first stage predicts whether the drug is an antiviral drug (AVP)[15], and 

the second stage predicts the targeting effect of the drug against different viruses through 

multi-task learning. The model not only supports the prediction of multiple viruses but also 

explains the influence of biometrics on the prediction results of the model through the Shapley 

value, which has important significance for understanding the prediction mechanism of the 

model and improving drug design. 

⚫ CIAntiCoV: The CIAntiCoV tool analyzes existing antiviral drug prediction methods and 

integrates multiple prediction models to improve the prediction accuracy of drug-target 

interactions. By comparing and analyzing the advantages and disadvantages of different 
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approaches, CIAntiCoV helps to identify effective drug combinations and optimize the drug 

screening process. 

Traditional machine learning methods achieve efficient analysis of complex biological data 

through feature engineering and model training in drug-target interaction prediction. However, 

these methods still face challenges when dealing with large-scale data and high-dimensional 

features, such as the complexity of feature selection, the interpretability issues of the model, and 

the difficulty of dealing with data imbalances. Nevertheless, these approaches have shown 

significant advantages in drug development, such as shortening screening cycles, reducing 

experimental costs, and providing valuable information for the discovery of new drugs. 

[31]However, in order to further improve the accuracy and efficiency of prediction, the combination 

of advanced technologies such as deep learning is still an important direction for future 

development. 

2.3.  Application of deep learning-based methods to the prediction of drug-target interactions 

In the field of drug-target interaction prediction, deep learning methods have significant 

advantages. First, deep learning models can automatically extract complex features through their 

hierarchical structure, thus reducing the need for manual feature engineering. Whereas traditional 

shallow learning methods rely on manual selection and extraction of features, deep learning 

automatically learns and identifies high-level features from raw data through architectures such as 

convolutional neural networks (CNNS), recurrent neural networks (RNN)[32], and Transformer. 

This ability is critical for processing complex drug and target data, which often have complex 

patterns and relationships. 

Second, deep learning models often provide better predictive accuracy. Compared to shallow 

learning algorithms, deep learning is able to capture more subtle patterns when processing large-

scale data, thus improving prediction performance. This high accuracy is particularly applicable 

in the prediction of drug-target interactions, where small differences in characteristics can affect 

the final prediction results. Deep learning models also excel in multimodal data processing, 

integrating data from different sources, such as the chemical structure of a drug and sequence 

information of a target, to improve the comprehensiveness and accuracy of predictions. 

However, deep learning approaches also face some challenges. One of the main problems is the 

high data requirements. The training of deep learning models typically requires large amounts of 
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data, and drug-target interaction datasets tend to be small, which can lead to undertraining of the 

models, which affects predictive performance. In addition, the training process of deep learning 

models often requires a lot of computing resources and time, especially with high-performance 

servers and graphics processing units (Gpus), which can be a bottleneck in resource-limited 

environments. 

In a study applying deep learning to ACVP [33](antiviral peptide) prediction, ENNAVIA and 

iACVP demonstrated practical applications of these techniques. ENNAVIA uses a transfer 

learning approach to improve model performance through pre-training and fine-tuning steps and 

optimizes parameters using grid search strategies. Despite its superior performance on independent 

test sets, it has strict limits on the input data length, limiting its ability to identify some potential 

ACVPs. In contrast, iACVP integrates traditional machine learning and deep learning methods, 

including Transformer, CNN, and BiLSTM, and combines different encodings and k-mer values 

to optimize the model. This integrated approach makes up for the shortcomings of a single model 

and can handle data of different lengths, improving the accuracy and robustness of the prediction. 

Overall, deep learning provides powerful feature learning and data processing capabilities in drug-

target interaction prediction. [34]Despite the challenges of data volume and computational 

resources, techniques such as ensemble learning and model generation can further improve the 

performance of models, providing more accurate predictive tools for drug development and disease 

treatment[35]. 

 

3.  Methodology 

 With the rapid development of deep learning and artificial intelligence technology, drug research 

and development, especially in the field of drug-target discovery, has ushered in unprecedented 

changes. While traditional drug development often relies on experience and laboratory screening, 

deep learning technology can significantly improve the efficiency and accuracy of new drug 

discovery by processing large amounts of data and complex pattern recognition. In particular, 

antimicrobial peptides (AMPs)[36] and antiviral peptides (AVPs), as new therapeutic agents, have 

attracted wide attention in recent years because of their effective ability against traditional 

antibiotic-resistant pathogens. 

This research focuses on developing and validating a novel Deep learning-based model, deep-

Avpiden, which aims to improve the classification and discovery efficiency of AVPs. We use 
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temporal convolutional networks (TCNs) for sequence modeling. This network architecture has 

significant advantages over traditional recurrent neural networks (RNNs) and long short-term 

memory networks (LSTMs) in capturing long-term dependencies and parallel computing power in 

sequence data. TCNs can optimize the drug-target identification process by reducing 

computational resource consumption and improving prediction accuracy when processing 

complex biological sequence data. 

In addition, in order to meet the requirements of the traditional model in computing resources, we 

also propose an optimized version of the model, Deep-AVPiden (DS)[37]. The model utilizes deep 

separation convolution technology to significantly reduce computing resource consumption during 

training and deployment. By building an online application platform that connects the functions of 

these models to the needs of laboratory researchers, we have achieved rapid classification of anti-

viral proteins and discovery of AVPs[38][39]. The platform not only improves the efficiency of data 

processing, but also provides a convenient tool for researchers to conduct auxiliary medical 

research. 

In our experiments, we compared Deep-AVPiden with existing state-of-the-art classifiers, and the 

results show that our method outperforms other models in performance[40]. In addition, through 

statistical analysis and performance evaluation of the model, we verified its effectiveness in 

predicting antiviral proteins in different organisms[41][42]. This study not only provides new 

methods and tools for drug discovery, but also demonstrates the potential for deep learning and 

artificial intelligence to be widely used in the field of assisted medicine. 

3.1.  Dataset  

The dataset used in this study contains samples of both antiviral peptides (AVPs) and non-AVPs, 

where each sample is a string of letters made up of standard amino acids. Data on antiviral peptides 

came from multiple databases, including AVPdb, HIPdb, starPep Database, DRAMP, and 

SATPdb. Non-antiviral peptides were obtained from Swiss-Prot database and AVPdb. The initial 

numbers of AVPs and non-AVPs collected were 10,500 and 9,000, respectively. To ensure data 

quality, we cleaned the data to exclude non-standard amino acids (e.g. B, J, O, U, X, Z) and peptide 

sequences less than 5 or greater than 50 amino acids in length. Subsequently, a CD-HIT program 

was used to de-duplicate both AVPs and non-AVPs at a threshold of 0.9 to filter out similar 

sequences. In order to eliminate the influence of inter-class sample quantity imbalance on model 
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performance, 699 non-AVPs were randomly removed. The final dataset contained 5,414 peptide 

sequences, including 2,707 AVPs and 2,707 non-AVPs. This data is further divided into training 

sets (70%), test sets (15%), and validation sets (15%). 

 

Figure 3. Te layout of the proposed work. 

 

3.2.  Data pre-processing. 

In order to convert the data into a format understandable by the computer, we first convert the 

amino acid sequence into a string of numbers, achieved through a one-to-one character-to-integer 

mapping. Since the length of strings in the data set varies, strings in the length [5,49] are 

normalized by padding from zero to length 50 in order to unify the format. The set of numerical 

strings after this processing is divided into training set, verification set and test set. The training 

set is then used to generate the word embedding matrix, a detailed process described in the 

"Proposed Model" section. 
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C(t) = (x ∗ df)(t) = ∑ f(i). xt−d. (i − 1)k
i=1     (1) 

In TCN, the input x is processed by a convolution operation ∗d and a one-dimensional filter f of 

size k. skip connections can be used in TCN blocks, which prevents gradient 

disappearance/explosion problems and helps avoid degradation issues and overfitting. Each 

residual block consists of two one-dimensional convolution layers and introduces a jump 

connection by adding the input and output of the block. In this way, an ordinary TCN block is 

transformed into a residual TCN block whose output (y) can be calculated from the given equation. 

y = activation(x + F(x))  (2) 
In the TCN block, F(x) represents the output from the final layer, followed by an activation 

function such as ReLU to introduce non-linearity. Skip connections are utilized to enable the 

residual block to learn the identity function of the input, which can contribute to stabilizing the 

learning process in deep neural networks.Depth-wise Separable Convolutions (DwSCs) emerged 

from the research community's interest in creating smaller and more efficient models. Before this, 

pre-trained models were either compressed or had shallow networks. DwSCs, introduced in studies 

and later used to train deep ConvNets, factorize a standard convolution operation into two stages. 

First, depth-wise convolutions apply a single filter to each input channel separately, reducing the 

computational load. Second, point-wise convolutions use a 1x1 convolutional layer with multiple 

filters to combine the outputs of the depth-wise convolutions. This factorization significantly 

reduces the number of training parameters and computations, leading to faster training times and 

reduced space usage, making models suitable for resource-constrained platforms like mobile 

devices. 

3.3.  Proposed model 

As depicted in Figure 4, the Deep-AVPiden model includes several integral layers, starting with 

the embedding layer that employs the skip-gram algorithm to create a word embedding matrix for 

the 20 standard amino acids. This process converts numerical strings into a feature matrix of 

dimensions (50,512), with 50 indicating the length of the string and 512 being the fixed-length 

vector that represents each amino acid.  
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Figure 4. Te deep-AVPiden architecture. 

Next, the Spatial Dropout layer performs regularization by dropping entire columns from the 

feature matrix, rather than individual elements, to handle high correlations between frames. This 

is followed by dilated causal Temporal Convolutional Network (TCN) blocks with two parallel 

1D-CONV layers, where filters vary in size, and ReLU activation is applied. Batch normalization 

layers are used for stability, with dilation factors increasing by powers of 2. 

The final model components include a Global Average Pooling (GAP) layer that averages the 

features from each TCN block, a concatenation layer that merges these outputs, and a dense layer 

with 64 units and dropout for further processing. The output layer uses a sigmoid function to 

produce a probability score between 0 and 1, classifying peptides as AVPs if the score is 0.5 or 

higher. The model also includes an alternative design using depth-wise separable convolutions for 

efficiency, comparing performance against the standard convolution-based approach. 

4.  Results and Discussions 

4.1.  Experimental design 

In this study, deep learning models are trained and evaluated in detail. The training used high-

performance computing nodes equipped with a 2.4GHz Intel Xeon Skylake 6148 CPU processor, 

192 GB RAM, and an NVIDIA V100 GPU. We used Python for programming and utilized the 

Keras framework (with TensorFlow as the back end) and the Keras-TCN library to build and train 

the model. 
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To verify the effect of the model, we compared it to several advanced classifiers, including 

DeepAVP, AVPIden, IMP-CA2L, ENNAVIA, Meta-iAVP, PreTP-Stack, and iACVP. These 

models are treated specifically to ensure the fairness of the test set. For example, these models are 

compared only after removing duplicate and homologous sequences to avoid bias in performance 

evaluations. In particular, the test sets of the ENNAVIA and AVPIden models are restricted to 

specific length intervals; for example, ENNAVIA classifies only sequences with lengths in 

between, while AVPIden classifies sequences with lengths in between. The iACVP model requires 

the sequence to contain more than five amino acid residues. Therefore, in order to accurately 

evaluate the performance of these models, we adjusted the test set accordingly to meet these 

requirements. 

In addition, when using the IPAMP-CA2L model, we found that the model sometimes failed to 

accurately label the type of function of AMP (such as antibacterial or antiviral). To address this 

issue, we removed instances from the test set when reporting results that could not clearly label 

the type of function to avoid uncertainty in the results. In this way, we ensure the accuracy of 

experimental results and a fair comparison of model performance. 

The models’ performance was evaluated using key metrics such as accuracy, precision, and the 

area under the receiver operating characteristic curve (AUC-ROC), which are computed using four 

values: true positives (TP, correctly identified AVPs), false positives (FP, non-AVPs incorrectly 

identified as AVPs), true negatives (TN, correctly identified non-AVPs), and false negatives (FN, 

AVPs incorrectly identified as non-AVPs). A thorough analysis revealed that the Deep-AVPiden 

model outperforms other models significantly across these performance indicators. The formula is 

as follows: 

Accuracy =
TP+TN

TP+TN+FP+FN
   (3) 

 

Precision =
TP

TP+FP
   (4) 

 

Recall(or True Positive Rate(TPR)) =
TN

TN+FP
   (5) 

 

False Positive Rate(FPR) = 1 −
TN

FP+TN
  (6) 

 
AUC − ROC = ∫ TPR. d(FPR)  (7)  
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We consider causal and non-causal temporal convolutional networks (TCNs) during model 

construction. Although the performance difference between the two is small, as Table 1 shows, 

the model using causal convolution outperforms the non-causal convolution model in terms of 

average accuracy, recall, and OC-ROC. Therefore, we chose causal TCNs to construct the Deep-

AVPiden model. Table 2 shows the performance results of various advanced models, including 

Deep-AVPiden and Deep-AVPiden (DS). It is evident that these two models significantly 

outperform other models on all performance indicators. The confusion matrix in Figure 3 shows 

that the proposed model provides more true cases (TPs) and true negative cases (TNs) and fewer 

false positive cases (FPs) and false negative cases (FNs) than other models. 

 

Model Accuracy (%) Precision (%) Recall (%) 
AUROC 

(%) 

Deep-AVPiden 

(causal) 
89.88 ± 0.01 90.29 ± 1.74 90.09 ± 1.72 95.99 ± 0.01 

Deep-AVPiden 

(acausal) 
89.77 ± 0.38 90.55 ± 1.32 88.73 ± 1.89 95.89 ± 0.31 

Table 1. Comparison between acausal and causal TCNs considered while building the model. 

Model Accuracy (%) Precision (%) Recall (%) 
AUROC 

(%) 

Deep-AVPiden 89.88 ± 0.00 90.29 ± 1.74 90.09 ± 1.72 95.99 ± 0.01 

Deep-AVPiden 

(DS) 
88.47 ± 0.13 88.49 ± 0.40 88.98 ± 0.38 94.90 ± 0.05 

iACVP 65.83 77.33 46.59 75.49 

AVPIden 59.98 57.2 73.74 68.81 

Meta-iAVP 57.63 58.75 58.75 58.29 

DeepAVP 53.08 53.94 58.99 52.77 

iAMP-CA2L 52.36 88.89 6.23 52.72 

PreTp-Stack 52.09 54.73 38.85 52.46 

ENNAVIA 51.27 55.79 51.51 48.99 

Table 2. Comparison ofdeep-AVPiden with existing models on test set. 
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Figure 3. Confusion matrices obtained for various models including Deep-AVPiden on the test set. 

 
Table 5. The AVPs discovered in antiviral proteins found in the proteomes of mammals, fsh, and plants, with  
probability score ≥ 90% and showing some sequence similarity with the AMPs existing in public databases. 
 

S.no Accession Number Protein Name 
Protein 

Length 
Discovered AVPs 

1 AAS77872.1 PAP 313 SDPFETNKCRYHI 

2 AAD32679.1 PIP 315 FAPASTWAASPNPI 

3 NP 197532.3 DCL4 1702 LSCILNNLELLRSWK 

4 AAB31048.1 Trichosanthin 289 FISNLRKALPNERKLYDIPLL 

5 NP 001319600.1 APUM5 913 EELVKOLAGOMVSLSLOMYGCR 

6 AAI12003.1 IFN-alpha-1 189 ICSLGCDLPOTHSLAHT 

7 ABD52364.1 IFN-alpha-2 187 FCTEPSSAAWNRTL 

8 AAI19352.1 IFN-alpha-3 186 FTSKDLSATWNATLLDSF 

9 EAW58615.1 IFN-alpha-4 187 VLNCKSICSLGCDLPO 

10 AAM78026.1 IFN-alpha-5 189 CNSVCSLGCDLPOTHGLL 

11 ATI15613.1 TRIM-8 568 LCPFCCISHCT 

12 KAG1939425.1 UЫ 379 RRSWPEPVIHPEPV 

13 AAO37934.1 Mx 626 PENIGEOIKRLIRKFI 

14 NP 001187107.1 IFN 162 FLNILNTROLTELT 

15 TSK18011.1 PRDX1 417 FVILEKMLMEICVIFSCV 

 

In the study, the scientists found that several special proteins are present in fish, such as the 

Ubiquitin-like (Ubl), Peroxiredoxin-1 (PRDX1) and Mx proteins, These proteins work through 

different mechanisms to inhibit the invasion, replication, and spread of viruses such as HCV 

(hepatitis C virus) and HIV-1 (human immunodeficiency virus). These findings suggest that 

these proteins have an important role in fighting viruses. 
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To further analyze the function of these antiviral proteins, the researchers fed some of the 

relevant protein sequences into a web-based application called Deep-AVPiden (DS). The 

application uses deep learning techniques to predict the properties of antiviral peptides. Specific 

analysis Settings include: 

Models used: Deep-Avpiden (DS) model, which is a Deep learning model specifically designed 

to predict antiviral peptides. 

Probability score: The probability score of the predicted outcome is 0.90, which means that the 

application believes there is a 90% chance that the predicted antiviral peptide will actually be 

effective. 

Antiviral peptide length: The minimum length of the required antiviral peptide is set to 10 amino 

acids and the maximum length is 30 amino acids. 

In this way, the researchers were able to screen and predict peptides with potential antiviral 

activity, thus providing important information and references for future antiviral drug 

development. 

 

 

 

 
Figure 4. Alpha-helical representations of AVPs discovered in the plant, mammal, and fsh proteins. 

 

The Deep-AVPiden web app, accessible at https://deep-avpiden.anvil.app, facilitates the 

prediction of antiviral peptides (AVPs) across various organisms such as mammals, plants, and 

fish. Utilizing this tool, we have identified several AVPs within proteins from distinct families, 

including ribosome-inactivating proteins (RIPs), which can halt protein synthesis, RNA-binding 

proteins (RBPs) that inhibit RNA virus replication, and Dicer-like proteins (DCLs) that engage in 

RNA silencing through the cleavage of double-stranded RNA. Notably, plant-derived AVPs like 

pokeweed antiviral protein (PAP) and trichosanthin have demonstrated efficacy against viruses 

such as Potato virus Y (PVY) and Cucumber mosaic virus (CMV).Interferons (IFNs), classified 
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into type I, II, and III based on receptor structure, are known antiviral proteins used in treating 

infections like hepatitis C and HIV. We also analyzed these proteins using the online 

tool https://heliquest.ipmc.cnrs.fr, which visualizes hydrophobic moments in alpha-helical 

peptides. A higher hydrophobic moment indicates better antiviral potential. Our findings suggest 

that the discovered AVPs possess a high hydrophobic moment, implying strong antiviral activity. 

Furthermore, the AVPs identified are significantly shorter than their parent proteins, highlighting 

that the tool effectively pinpoints the core antiviral regions. We performed clustering analysis with 

CD-HIT and used isometric mapping to compare the discovered AVPs with those in our training 

set. The 2D visualization shows that the predicted AVPs closely resemble the training set's AVPs, 

suggesting that the identified peptides are likely to have substantial antiviral activity. Future 

laboratory synthesis and validation will confirm their effectiveness. 

5.  Conclusion 

1. Summarize the application of deep learning in the prediction of drug-target interaction 

Deep learning techniques show significant advantages in the prediction of drug-target interactions. 

By automatically extracting and learning complex features, these methods reduce the need for 

manual feature engineering and provide highly accurate prediction results. Despite the challenges 

of large data volumes and high computational resource requirements, Deep learning models, such 

as Deep-Avpiden, significantly improve the accuracy and efficiency of predictions through their 

powerful feature learning and data processing capabilities, thus providing a more reliable tool for 

drug development and biomedical research. 

2. Compare the effects of traditional and deep learning methods 

Compared with traditional machine learning methods, deep learning methods show better 

performance in drug-target interaction prediction. Although traditional methods have certain 

advantages when dealing with small-scale data, deep learning's automatic feature extraction ability 

and high prediction accuracy make it a better choice when facing high-dimensional features and 

large-scale data. The experimental results show that the Deep-AVPIDen model exceeds other 

existing advanced classifiers in many performance indicators, which proves the practical 

application value of Deep learning in this field. 

3. Future research direction and application potential 

Although the current study shows that deep learning has achieved remarkable results in drug-target 

interaction prediction, there is still room for further improvement. Future research could focus on 

optimizing the model's computational efficiency, processing larger data sets, and improving the 

model's interpretability. At the same time, applying deep learning methods to more biomedical 

problems, such as drug combination prediction and new drug discovery, will further expand its 

application potential and promote progress in the field of biomedicine. 
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